Triiodothyronine amplifies the adrenergic stimulation of uncoupling protein expression in rat brown adipocytes
ثبت نشده
چکیده
Hernández, Arturo, and Maria Jesús Obregón. Triiodothyronine amplifies the adrenergic stimulation of uncoupling protein expression in rat brown adipocytes. Am J Physiol Endocrinol Metab 278: E769–E777, 2000.—Uncoupling protein (UCP), the mitochondrial protein specific to brown adipose tissue, is activated transcriptionally in response to cold and adrenergic agents. We studied the role of triiodothyronine (T3) on the adrenergic stimulation of UCP mRNA expression by use of primary cultures of rat brown adipocytes. Basal UCP mRNAlevels are undetectable. Norepinephrine (NE) increases UCP mRNA during differentiation, not during proliferation. In hypothyroid conditions, UCP mRNA response to NE is almost absent. The presence of T3 (0.2–20 nM) greatly increases the adrenergic response (30fold). The sensitivity of UCP mRNA responses to NE is potentiated ,100-fold by the presence of T3. The effect is proportional to the dose and time of preexposure to T3. The increases obtained with NE and T3 are prevented by actinomycin and cycloheximide. T3 greatly stabilizes UCP mRNA transcripts. The effects of thyroxine and retinoic acid are weaker than those of T3. In conclusion, in cultured rat brown adipocytes, T3 is required and both synergizes with NE to increase UCP mRNA and stabilizes its mRNA transcripts.
منابع مشابه
Triiodothyronine amplifies the adrenergic stimulation of uncoupling protein expression in rat brown adipocytes.
Uncoupling protein (UCP), the mitochondrial protein specific to brown adipose tissue, is activated transcriptionally in response to cold and adrenergic agents. We studied the role of triiodothyronine (T(3)) on the adrenergic stimulation of UCP mRNA expression by use of primary cultures of rat brown adipocytes. Basal UCP mRNA levels are undetectable. Norepinephrine (NE) increases UCP mRNA during...
متن کاملThe T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes.
Brown adipose tissue (BAT) thermogenesis increases when uncoupling protein-1 (UCP1) is activated adrenergically and requires T3. In humans, UCP1 activation in BAT seems involved in body weight maintenance. BAT type 2 deiodinase (D2) increases in response to adrenergic agents, producing the T3 required for UCP1 expression. T3 actions are mediated by thyroid hormone nuclear T3 receptors (TR), TRα...
متن کاملDifferences in the response of UCP1 mRNA to hormonal stimulation between rat and mouse primary cultures of brown adipocytes.
UNLABELLED Uncoupling protein 1 (UCP-1), the specific marker of brown adipose tissue, is transcriptionally activated in response to adrenergic stimuli and thyroid hormones are necessary for its full expression. We describe differences in the regulation of UCP-1 mRNA expression between rat and mouse brown adipocytes in culture, using norepinephrine (NE), triiodothyronine (T3), insulin and retino...
متن کاملDevelopment of Phodopus sungorus brown preadipocytes in primary cell culture: effect of an atypical beta-adrenergic agonist, insulin, and triiodothyronine on differentiation, mitochondrial development, and expression of the uncoupling protein UCP
A new cellular model for the study of brown adipocyte development and differentiation in vitro is presented. Preadipocytes isolated from brown adipose tissue (BAT) of the djungarian dwarf hamster Phodopus sungorus are able to proliferate and differentiate in vitro into true brown adipocytes able to express the BAT marker protein the uncoupling protein (UCP). Whereas basal UCP expression is very...
متن کاملInsulin increases the adrenergic stimulation of 5' deiodinase activity and mRNA expression in rat brown adipocytes; role of MAPK and PI3K.
Type II 5' deiodinase (D2) activity produces triiodothyronine (T3) from thyroxine (T4) and is induced by cold and norepinephrine (NE) in brown adipose tissue. T3 is required for and amplifies the adrenergic stimulation of D2 activity and mRNA in cultured brown adipocytes. D2 is upregulated by insulin and decrease in fasting. We now study the regulation by insulin of the adrenergically induced D...
متن کامل